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Adiabatic charge transport, the eta invariant, and Hall 
conductance for spinors 
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TU-Berlin, Fachbereich 3 IMathematik, MA 7-2. ShaBe des 17 Juni 136, 10623 Berlin, Germany 

Received 18 November 1993 

Abstract. We calculate the ground-state degeneracy for SchcMinger-Pauli eleamns on various 
non-compact Riemann surfaces, as a function of a paramet& representing a flux. We use the 
results to calculate the charge transport, and the (appropriately defined) Hall conductance; for the 
(degenerate) lowest Landau level of Schrildinger-Pauli electrons on these surfaces. We connect 
the charge tmoSport with the AtiyahPatodi-Singer q-inuadant for (compact) manifolds with 
boundaries. 

1. Introduction 

We calculate the charge transport of the lowest Landau level for Schrodinger-Pauli electrons 
on various surfaces. We do this by following the flow of states caused by an adiabatically 
changing flux tube. The flux tube may pierce the surface or may thread it without piercing. 
We demonstrate how to use knowledge about the ground-state degeneracy to get information 
on the charge-transport properties. 

The degeneracy of the ground state for spinors enables us to perform the necessary 
calculations, using a slight modification of the Atiyah-PatodiSinger (APS) index theorem 
for manifolds with a boundary. In particular, we connect the charge transport with the APS 
q-invariant [APS]. 

The paper is organized as follows. In section 2 we briefly sketch the calculation of 
the Hall conductance for the Euclidian plane and the infinite cylinder, in the presence of a 
constant, perpendicular magnetic field B .  We explain the connection between the adiabatic 
transport and the Hall conductance. The wish to generalize these results leads us to consider 
spinors. In section 3 we derive the Schrodinger-Pauli equation for non-relativistic spinors on 
a surface. We show that the ground-state degeneracy for a Schrodinger-Pauli operator equals 
the number of zero modes of the corresponding Dirac operator. In section 4 we calculate 
the charge transport for spinors on the plane (or any surface homeomorphic to it), under the 
action of a (compactly supported) magnetic field. For this we derive a generalization of a 
result by Aharonov and Casher [AC] which gives the ground-state degeneracy for electrons 
in a magnetic field on the plane, in the absence of magnetic flux tubes. In section 5 we 
calculate the charge transport for Schrodinger-Pauli electrons on a general surface with 
cylindrical 'ends', by using the APS index theorem for manifolds with boundaries [APS]. 

Throughout this paper, we adopt the unit system fi  = c = Zm, = 1. where fi is Planck's 
constant, c the velocity of light, and m, the electron's mass. In these units, & (one flux 
quantum) equals 2rr. We also absorb the electron charge in the definition of the magnetic 
vector potential A and the magnetic field B. (Boldface letters indicate forms-A is a 
1-form, and B = dA is a two-form). 

0305470/94/072593+12$19.50 @ 1994 IOP Publishing Ltd 2593 
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2. Adiabatic transport on the plane and the c y l i n d e r 4  constant magnetic field 

For the special cases of the plane and the cylinder, with a constanf magnetic field B 
perpendicular to them, we can calculate explicitly the adiabatic charge transport. 

2.1. Adiabatic transport on the plane Vor a Sckrbdingerparticle) 

Consider the infinite x-y plane. We pierce it by a flux tube through the origin, carrying 
a flux Q,. The flow of states during an adiabatic increase of the flux from zero to 2x was 
originally calculated in [Lau]. A detailed derivation is given in [MI. Here, we sketch the 
results. 

(1) For Q, = 0, the e,igenfunctions of the Schrodinger operator can be labelled by two 
indices, n and m, where n 2 0 indicates the energy, E,, = (2n + 1)B, and n is the 
angular momentum in the 1 direction, -n < m. 

(2) While we increase the piercing flux, the states are changed according to 

n + [  i f m > 0  m + m - n +  n+n+ i f m < 0  

where n+ q5/2n. 

Hence, while the flux is increased adiabatically, the eigenstates of the system change. 
At the end of the process, when n+ = 1, they are mapped to themselves, as they should be. 
But, since this map is non-trivial, and since decreasing the quantum number m decreases 
the expectation value of r ,  there is a flow of states toward the origin: each Landau level 
gains a state from spatial infinity. (In addition, there is a spectral flow; see (1) and [AP].) 

2.2, Adiabatic tramport on the cylinder (for a Schrodingerparticle) 

Consider an infinite cylinder of radius 1, threaded by a flux Q, . We define a coordinate 
system on it, (x, y), with -CO < y < CO, 0 < x < 2x. We choose A = By&. 

- ay2] +. The 
flux enters through the boundary condition 

The timeindependent Schrodinger equation is E+ = [(-ia, - 

+(r = 2x1 = e-'++(x = 0 ) .  (2) 
The Lz solutions to this equation are 

(where k = 1 - n+. and 1 is an arbitrary integer), with energies E,,k = B(2n -F 1). 
When the flux is increased adiabatically, the eigenstates of the system change. At the 

end of the process, when n+ = 1, they are mapped to themselves by the transformation: 
k 4 k - 1. By (3), this is equivalent to the transformation: y 4 y + (1/2nB).  

Notice that, unlike the case of the plane, no stafe changes its energy during the process: 
there is no flow in energy space. But there is a spatial flow: each state, in all the Landau 
levels, moves a distance of 1/2xB in the j direction. The net effect is that one charge per 
each level is transferred from y = -00 to y = +W. 

Here, it is natural (see the next subsection) to define the Hall conductance as the net 
number of states transferred. We get (again) that it equals I for each Landau level, in 
agreement with the result obtained by the usual definition: o m  = Z H ~ I /  V H ~ I  (where we 
define the 'adiabatic voltage' to be V = -d@/dt.) 
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2.3. The adiabatic transport and the hall conductance 

We can view the adiabatic charge transport as a specual property of the Hamiltonian. 
For example, we may ask a question such as: given a family of eigenvalue problems, 
parametrized by a number 4, with the property Spec(H, 4)  = Spec(H, 4 mod zir), what is 
the (spectral and spatial) flow of states due to adiabatic changes in the fluxes (the spatial 
ff ow of states being related to the adiabatic transport)? 

But, we can also view this same property differently: the 'parameter' 4 represents a 
magnetic flux tube. Classically, when a flux Q is varied in time, an electromotive force 
(BMF) around it is formed. We may view the adiabatic change of a parameter Q as a source 
of a tiny EMF. From this viewpoint, the adiabatic charge transport is related to an (averaged) 
conductance, the number of states transported being the averaged conductance in units of 

In the examples we consider in this paper, we find that the direction of the charge 
transport is perpendicular to this 'EMF'. Hence, the associated conductance is a 'Hall 
conductance'. 

ez/2n.  

3. The Sehrodinger-Pauli equation 

We derive the non-relativistic approximation to the D i m  equation on two-dimensional 
surfaces, the Schrodinger-Pauli equation. 

We choose the metric tensor to be conformal: g,, = e%&,, where a is a function of 
the coordinates. 

We write the time-dependent Dirac equation in the form (see, for example, [GSW]) 

where 
0 Kt 1 0  

P ' ( K  0 )  @ = ( o  -1) 

and 

K = -ie-'"(2ai +&a - Zia) Kt = -ie-'"(2az + a,a - ZiZ). - (6) 

We use the notations z x ,  + ixz, Z = X I  - ixz, a = - ;( A 1 + iAz), ii E $(Al - iAz). 
(There is a freedom in the definition of the Dirac operator [GSW]. We made a choice such 
that the Dirac operator is off-diagonal. For details, see [Pnu].) 

Applying a routine procedure, (see, for~example, [BD]), we get the non-relativistic 
approximation to the Dirac equation, the Schrodinger-Pauli equation: 

where rp., is a two-component spinor wavefunction, representing a non-relativistic Pauli 
particle. 

This shows the relevance of the index of the Dirac operator for calculating the ground- 
state degeneracy of the corresponding Schrodinger-Pauli operator, $: the Dirac index 
is the difference between the dimensions of KerK and KerKt, while the ground-state 
degeneracy of the Schrodinger-Pauli operator is their sum. We want to calculate the charge 
transport (and the Hall conductance) for the ground state of Schrodinger-Pauli operators. 
We begin with a simple example. 
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4. Adiabatic transport of spinors on the plane-a general magnetic field 

We calculate the Hall conductance of the lowest Landau level on the plane, with a non- 
constant, compactly supported magnetic field. Our strategy is similar to the one applied in 
section 2 we calculate the ground-state degeneracy as a function of a piercing flux tube, 
and find the flow of states. We generalize this result to any non-compact, simply connected 
surface. 

4.1. The ground-state degeneracy for a Schrtjdinger-Pauli operator on the plane 

When speaking of 'the lowest Landau level', we refer to Lz solutions of the Schrodinger- 
Pauli equation, of zero energy. The dimension of the corresponding function space is 
DmKerLz K + DimIkry Kt. 

We calculate the ground-state degeneracy on the plane, with a non-constant magnetic 
field of compact support. 

Because, on the plane U = 0 (ggu = 6,,), 
-iK = 2(& - ia) (8) 

z = x + iy = rei8 (9) 

-ia = ai? iZ = a,q (10) 

. 

- iK+ = ~ ( a ,  - iz) 

where we use the notation 

a = $(Ax +iA Y). 
We define (0: 

(A, = 4 , q .  A* = aYq and E = 4aefp). Hence we may write 

From this it is easy to deduce 
iK = Z(e-pai eq) iK+ = 2(epa, e-p). (11) 

iK@, = o + @ I =  e-'f(z) iK+@z = o + @z = eQg(Z) (12) 
where f(z), g(Z) are (arbitrary) functions of z and Z, respectively. 

We want to find the dimension of the space of squore-integrable solutions of these 
equations. First we do this for a magnetic field with no frw: tubes (we call such a field 
regular). Transforming to a polar coordinate system, we find 

(13) 

Asymptotically, for r --f 00, we can choose q(r,O) + q(r), independent of O 
(remember that B has a compact support!). Hence, if we take the closed path of integration 
as a circle of radius r 4 CO, centred at the origin, then: 

1 
r 

= +ra,(o A, = --a8@, 

As de = zara,@ = B d(area) (14) + l-l- 
where the surface integration is over the area enclosed by the path of the line integration, 
and @ B  denotes the total magnetic flux through the surface. We demand @B < W. 

Hence, asymptotically, for r + 00, 

@B 
(o N - Inr 

27C (15) n B  Inr 

where nB denotes the number of magnetic flux quanta through the surface. 
Combining this with (12). we get the asymptotic form of the solutions: 

91 + r-".f(z) 92 + rnBg(Z). (16) 
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Without loss of generality let us assume for the moment that n g  > 0. If we now impose 
the Lz condition, we find that there is no square-integrable solution with @Z # 0 (g(Z) must 
be a polynomial of a uon-negative integer order, for single-valuedness and regularity at the 
origin). We can have square-integrable solutions with @I # 0, with f(z) being a polynomial 
of order smaller than d,, = n g  - 1. The number of such independent polynomials is LnB] ,  
which is also the ground-state degeneracy. (LxJ denotes the largest integer shictly smaller 
than x . )  For negative n g  the ground-state degeneracy is [ -ne] .  

Up to now we have reconshvcted the Aharonov-Casher [AC] result: the ground-state 
degeneracy for the Schrodinger-Pauli operator on the plane is the largest integer strictly 
smaller than the absolute value of the net number of flux quanta through the plane. All these 
zero-energy states have the same direction of spin, depending only on the sign of n g .  This 
seems like a surprising result: take two large, separate areas, where there are +nl magnetic 
flux quanta through one, and -112 through the other (nl, nz being positive), apriori we 
could assume there would be n1 + 112 zero-energy spinors, pointing in opposite directions 
in each area. But, as we have seen, this is not so. 

Now we want to calculate the Hall conductance, or the spatial flow of states, as a 
function of a piercing flux at the ‘origin’, 4.  For this we generalize the Aharonov-Casher 
result, and calculate the ground-state degeneracy as a function of thepux. 

Again, we use -ia = 8 2 ~ .  For r + 0, we can choose (o to be independent of r. Hence, 
As = r&p, and A,  = 0. Because lim,,o $As dB = 4, we find that 

@J l i m q = - l n r ~ n + i n r  
7-0 2H 

Remember, we are interested in square-integrable functions of the form: $rl = 

Because of the flux, the wavefunctions are no longer regular at the origin, so we do 
not demand that f(z) and g ( i )  are of positive order. But we have to check the square 
integrability both at infinity and at the origin. 

Assume that nB > 0. Then, the square-integrability condition at infinity yields that 
there are no Lz solutions with @z j4 0. To have a solution with @, # 0, f(z) must be a 
polynomial of degree less than the total magnetic flux through the surface, n B  + n,+ (we use 
n B  to denote only the contribution of the ‘regular’ part of the magnetic field, not including 
the flux tube, to the total magnetic flux through the surface). 

Because very close to the origin, @I = e-’f(z) + rVn+f(z), the square integrability 
implies that f(z) is a polynomial of a degree greater than no - 1. 

These two conditions together gives us the square-integrability condition: f(z) = rZzm,“ a,z” with n,,,in 7 n+ - 1, and nmiu < n B  + n+ - 1. 
The dimension of the space spanned by these polynomials is Lng + n,+l - [n+] ([XI 

denotes the integer part of x ;  it is the largest integer smaller than or equal to x) .  
This gives us the generalization we need: in the presence of a flux tube, we also get 

only one spin state for the Lz zero-energy solutions, and the ground-state degeneracy (GSD) 
is 

e-’”f(z), *Z =e’&?). 

We see that the ground-state degeneracy is periodic in 4 ,  as it should be. (For negative n g  
we get GSD = 1-ns + n6J - [?I,+], and the ground state is composed of states only with the 
opposite spin direction, @ = (0, @#.) 
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j GSD 

I I D 
I1 l 2  ”* 

Figure 1. The ground-state degeneracy of the Pauli operator on the plane. 

4.2. The Hail conductance 

To calculate the Hall conductance, let us follow the change in the ground-state degeneracy 
as we change, adiabatically, the piercing flux from zero to one flux quanta. As long as 
nB f n 4  does not cross an integer value the degeneracy is the same as for zero flux. When 
it crosses an integer the degeneracy increases by one, and decreases back when the flux 
equals one flux quanta. When we continue to increase the flux we get the same behaviour, 
periodically, as demonstrated in figure 1. 

What happens during this process? When r z ~  + n+ assumes an integer value, one state 
‘becomes’ an Lz state. When n4 is an integer, one L2 state increases its energy and no 
longer belongs to the ground state. The spatial flow is towads the origin. 

4.3. Generalization to a curved sulface 

We can further generalize the Aharonov-Casher result, and calculate the ground-state 
degeneracy and Hall conductance for any smooth surface, homeomorphic to the plane, with 
vanishing Gausiian curvature at infinity, with one piercing flux through it, and a compactly 
supported B. 

We choose a conforma1 metric tensor on the surface: dS2 = ez”(dx2+dy2). The vector 
potential 1-form is A = A, dr + A, dy. The magnetic field 2-form is 

(19) B = dA = (&A, - a,A,) dx A dy = e-*(a,A, - ayAx) d(area) = B d(aea). 

For the choice a = iaiq ( B  = 4e-2na&, and As = ra,rp, A, = -(l/r)a& we have 
i e“ K = 2 (a, + a,($. + q)) = e-CC4z)+s)a. e((r/2)+v) 

- i e s ~ t  = 2 (a, + a 1 1  (Liz0 - rp)) = ,(-(dZ)+co)a 2 e((a/2)-v) , 

~ t $ ~  = o -+ $z = e-([‘/2)-V) dz). - 

(20) 

(21) 

Hence 

f(z) K q 1  = 0 + $] = e-l(d2)+9) 

We want to find the ground-state degeneracy as a function of the total magnetic and 
geometric fluxes through the surface~(by ‘geomeaic flux’ we mean l/kd(area), where k 
denotes the Gaussian curvature of the surface: k = -4e-%azju). To do so, we write the 
integrated curvature as a function of U: we define 

(22) I c = i(C, + icy) = - i ap  
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C, = (l/r)&u. Using k = -e-%(a,, + ayy)u. we find CO = 

k = e-20(a,cy - a,c,). (23) 
Asymptotically (for r + CO), we take U to be 6' independent (this can be done because the 
geometric curvature vanishes), and 

CodB=- kd(atea.)=-@k. (24) 4 ss 
We  find^ that, for r + CO, c -+ -(%/2x)lnr = -nkInr. We already know that 
asymptotically, for r -+ 00, rp -+ (ng  + n+) I n r ,  while for r + 0, q + ng Inr. 

First, let us assume that 4 = 0. In this case, f ( z )  and g(Z) are polynomials. The 
solutions (21) to (20) have the following asymptotic form at infinity: 

g(z). (25) f ( z )  @z -+ r ( f ia+ndz)  - @, + r-(*a-("*/2N 

The square-integrability condition: ]Se"[$i;.I'r dr dB < 00 yields that @, is a polynomial 
of degree nl < ng + ink - 1, while @Z is a polynomial of degree nz < -nB + frit - 1. 
Because the surface is homeomorphic to the plane, i n k  < 1. Hence, for a given setting, we 
can have either solutions of the form (@I, O)r or (0, @z)*, depending on ns. but not both. 

Assume n g  > 0. Then, all the square-integrable solutions of the vacuum equation are of 
the form (@I, 0)'. Because f(z) is a polynomial of degree less than ng + - 1, the space 
of functions f ( z )  is of dimension Lng + 4nr2] and this is the ground-state degeneracy of 
the Schrodinger-Pauli operator. (For nB i 0, the ground-state degeneracy is L-ng + i n k ]  .) 

0, we again have only solutions of the form (@, , O)r. In this case, 
f (z) = xz?mm anz" with n,,.in P n+ - 1, and nmax < nB + ink + n+ - 1, the number of 
such independent polynomials being LnB + &a + n#+J - In+]. 

Again, it is not difficult to generalize tlus result to the case where there is a conic 
singulmity of total curvature 2nnbt at the origin. In this case, nmin > n+ + in+& - 1, and 
nmax < ng + ink +n# + in+, - 1. 

Hence, for a surface which is homeomorphic to the plane (except for one possible 
conical point at the origin. having curvature 2nnc, 0 < n+A < I), with compactly supported 
magnetic field and curvature, in the presence of a flux tube q5 at the origin, the ground-state 
degeneracy of the Schrodinger-Pauli operator is 

(26) 
(We could expect this form, the only difference between this equation and the corresponding 
one for the plane being the replacement of B by the 'effective' field B + k / 2  or B - kf2, 
depending only on the sign of n g .  See also [Pnu].) 

Notice that the ground state is polarized (all the states belonging to it have the same 
spin direction). 

The adiabatic charge transport picture is almost identical to the one we had for the 
plane, only the values of the flux where the degeneracy 'jumps' change. Hence, we again 
have a flow toward the origin when we increase the flux adiabatically. 

For 4 # 0, and nB 

2 .k  

I 

GSD = LlngI + f n k  + n+ + 4nCJ - [n+ + 

5. Adiabatic transport of spinors on a 'generalized' cylinder 

We calculate the transport on a general surface with cylindrical 'ends', using the Atiyah- 
Patodi-Singer [APS] index theorem for manifolds with a boundary. As in the previous 
sections, we do this by calculating the ground-state degeneracy as a function of a parameter, 
which represents an infinite flux tube that threads the cylinder without piercing it. To get 
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an intuitive understanding of the results we start by calculating the ground-state degeneracy 
on the flat cylinder in the presence of a non-constant, compactly supported magnetic field. 

5.1. The ground-state degeneracy of spinors on a cylinder 

We calculate explicitly the L2 ground-state degeneracy of a spinor on a cylinder. The 
calculations here are similar to these of Stone [Sto]. 

The Dirac operator on the plane is 

(27) 
0 ~~ (a, - iA,) - i(3, - iA,) 

@= ((a, - iA,) + i(a, - iA,) 0 
We want to consider a cylinder of radius 1, so we impose periodic boundary conditions 

in the x-direction: p(x + k) = + ( x ) .  We choose a vector potential A = A(x, y) dx. We 
choose, asymptotically (for y --f +too) A = Adx (this can always be done because the 
field vanishes at infinity). 

Because of the periodicity in x ,  the wavefunctions are of the form 

where n denotes an arbitrary integer. 
asymptotically, of one of the following two types. 

(1) 

The zero modes of the Duac operator are, 

(Notice that j ,b)e '"  solves, asymptotically, the equation K(fb)e'"X) = 0. AISO 
notice that for the regions where there exists a magnetic field, generically, unless 
E is cylindrically symmetric, A = ~ , A , ( ~ ) & ~ d x .  For these regions, the zero 
modes involve more than one Fourier frequency, because the equations for the f,(y)'s 
become coupled.) Such functions @(x,  y) are square integrable if and only if n - A 
changes sign from negative to positive as y goes from -too to +W. Choose the gauge: 
A-, = 4iio/2rr = ninr A, = ~ o u l / 2 ~  = noul The Lz condition is equivalent to the 
demand 

nin > n > noUl. (30) 
Hence L2 solutions of this form exist if and only if lninJ 2 rnonll, and the number of 
such solutions is 

(31) N ,  = Lni.1 - m,,l + 1 = L n d +  lml+ 1 
(we defined nI = ni., nz = -no,,, and 1x1 is the largest integer strictly smaller than x ) .  

(2) 

where g(y) e'", solves the equation Kt(g (y )  e'",) = 0. 
Hence the L2 condition gives the demand 

now > n > nin (33) 

(34) 

Here, L2 solutions exist if and only if ~nou1l > rninl, and their number is 

N. = h t J  - rninl + 1 = 1-nd + 1-nd + 1. 
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We see that for a given Dirac operator, we get only one ‘type’ of solutions (either 
KerLzK or KerL2Kt being empty). So, without loss of generality, let us assume that 
lniIll 2 rnOut], and calculate the number of the zero modes of K. We already wrote this 
number as N, = Lnll + in21 + 1, where ni denotes incoming fluxes. Now, we write N, in 
a different form, by using the following two facts. 

(1) 

the number of magnetic flux quanta hough  the surface. 
(2) The incoming and outgoing fluxes through the surface include both the ‘real’ flux tubes 

one puts, and the additional Berry phases, corresponding to the holonomy of the up 
(down) spinor: when the spinor is parallel transported around the cylinder, it acquires 
a phase of f r r ,  depending on its direction (this is a Beny phase in real space, rather 
than in a parameter space (see also [Pnu])). Denoting by nL,oat the ‘true’ incoming and 
outgoing fluxes, we find n:,out = nin,our + 7. 

If we now define a ‘modified‘ fractional part of x :  

I 

(-f < Ixh/z < f), we can write the number of zero modes in the form: 

(remember: n;, j = 1,2, denote the ‘true’ incoming fluxes). 

calculate the charge transport. 
Similarly, for the second case we get minus this expression. This is all we need to 

5.2. Adiabatic transport on the cylinder 

To Calculate the Hall conductance we ‘put’ a flux tube through the cylinder, and follow the 
flow of states as we adiabatically increase the flux from zero to one flux quantum qb0. 

The changing flux tube generates an infinitesimal electromotive force around the cylinder 
(in the ?-direction). Therefore, the ‘Hall current’ should flow in the ?-direction. Hence, the 
Hall conductance equals the net number of states transferred from y = --w to y = +ca 
during the adiabatic increasing of a flux, @, threading the cylinder, from zero to. one flux 
quantum. k. 

If we introduce the flux through the boundary conditions, the effect of adding it is 

One can easily see that, generically, there are two ‘jumps’ in the degeneracy of the 
ground state during the process, when either nl + (@/@o) or nz - (@/bo) cross an integer. 
In the first case the degeneracy decreases by one, while in the second case it increuses, again 
by a single state. At the end of the process the degeneracy returns to its original value, as it 
should. But during the process the states have flowed when nl + (@/&) = integer + E (E 

denotes a positive infinitesimal number), a state which was not in Lz, because of exponential 
divergence at y + --CO, becomes an ‘honest’ Lz state, while when n2 - ($@,J) = integer+& 
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an Lz state becomes a non-normalizable state that diverges exponentially as y + +CO. 

From this we deduce that the net effect of the process is transferring one state from -w 
to +CO during the process. We say that the ‘Hall conductance’ for the ground state of the 
Schriidinger-Pauli operator on the cylinder is exactly 1. 

5.3. HaN conductance and the APS index theorem 

Let us examine again the case of the infinitely long cylinder from a different point of view: 
because we assume that there is a magnetic field only on a finite part of it, it follows that 
one can ‘cut’ out of it afnife cylinder, such that this finite cylinder includes all the area 
with non-vanishing magnetic field. It turns out that the number of zero-modes which obey 
the ‘APS boundary conditions’ (to be defined) on this finite cylinder (almost) equals the 
number of L2 zero-modes on the (original) infinite cylinder. This is true for all surfaces 
with ‘cylindrical‘ ends. For such surfaces, we can find Indp @J, by calculating the Dirac 
index Ind ZD for manifolds with boundaries, using the Atiyah-PatodiXinger scheme [APS], 
where the manifold with the boundary is a compact sub-manifold of the original surface, 
containing all the area on which either B or k do not vanish. 

Near the boundary, the Dirac operator can be written in the form 

where U is the coordinate perpendicular to the boundary, and b is the differential operator- 
‘the boundary operator’. In our case, we choose b = -ia, -@(in/@o), where 01 parametrizes 
the boundary. 

Here we only quote the APS result (for a general compact surface, with boundaries) 

. .  

(details can be found in [APS] physically oriented references are [FOW, NS]). 
The ‘correction’ term to the index, compared with the index on manifolds without 

boundaries, is associated with the boundary operator. ~ ( 0 )  is defined by q(s) = 
~:injosign(A,)lh,l-s, where A, are the eigenvalues of b, and h is the number of zero 
modes of b. q(0) is called the spectral asymmetry of the boundary operator. Take, for 
example, b = -ias - (&,a/@o). Then 

and 

“( 1 if K@in/ddl = 0 
0 otherwise. 

Hence 

where -1 < { x ] ; , ~  < $ denotes another ‘modified fractional part’ o f x  (compare with (36)). 
Hence the index of the Dirac operator on the manifold is 
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Figure 2. (a) A compact surface with boundaries and cylindrical 'ends', with an applied 
magnetic field. (b) The 'corresponding' infinite surface. 

where n: @;(im)/& denotes the number of incoming flux quanta through the boundary j .  

(45) 

(where Index p is the index of the Dirac operator on the compact surface, while Index'z p 
is the L2 index of the Dirac operator on a non-compact surface, which can be obtained 
from the compact one by gluing to it semi-infinite cylinders. In our example the compact 
surface is the finite cylinder, and the non-compact one is the infinite cylinder). Hence 

However, it is known (see [APS]) that 

Index p = Indexy p - h 

This result coincides with the one we got for the cylinder by a direct computation (see (37)). 
But the result here is applicable to a much wider class of surfaces. An example is shown 
in figure 2, where we draw both the compact surface with boundaries to which we apply 
the APS index theorem, and the non-compact extension of it. 

Calculating the charge transport is now simple: as in the case of the cylinder, we vary 
adiabatically a flux tube that goes through the surface between two boundaries. The index 
'jumps' twice: once we loose a state, and once we gain one. Hence, we would like to 
conclude that there was one net state flowing between the two 'ends'. But this is not so 
simple because one has to prove that we did not gain or lose pairs of states, having opposite 
spin direction, during the process, because the index is insensitive to such a situation. For 
this not to happen we can give sufficient conditions (mainly, the magnetic field plus half the 
Gaussian curvature being either positive or negative everywhere (see [Pnu])), but we know 
from the example of the infinite cylinder that this condition is not necessary (we found that 
one of the kernels is empty, regardless of any local configurations of the magnetic field, 
depending only on the total magnetic flux through the surface). 

Finally, we mention that we can relax the assumption of the 'cylindrical ends'. In the 
case of conical ends we also get two 'jumps' of the index during the adiabatic process, only 
their locations as a function of the flux change, according to the curvature of the boundary. 
A condition that we cannot relax is the demand that near the boundary there is an 'epsilon 
neighbourhood' with no magnetic field or geometrical curvature. 
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6. Summary 

In this paper, we considered charge @ansport due to an adiabatic variation of a magnetic 
flux tube on various non-compact surfaces. We demonstrated how to use knowledge on 
the ground-state degeneracy in order to get information on the charge transport. For this 
we also need to know what happens at the critical values of the flux, the values where we 
‘gain’ or ‘loose’ an Lz state, in order to know to where (or from where) a state has been 
transported. 

Because we deal with spinors the ground-state degeneracy is related to the Atiyah- 
Patodi-Singer index. We connected the charge hansport on non-compact surfaces with the 
jumps in the value of an eta invariant for the boundary of a corresponding compact surface: 
the values of a flux tube for which the ground state of the non-compact surface jumps are 
exactly the values for which (at least one) eta invariant of the compact surface jumps. 

Interpreting the adiabatic changing of the flux as a source of an ‘infinitesimal‘ 
electromotive force enables us to deduce from the transport the appropniate (averaged) 
Hall conductance. 
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